531 research outputs found

    Temporal Logic Motion Planning for Mobile Robots

    Get PDF
    In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal ordering of different tasks. In order to provide computational solutions to this problem, we first construct discrete abstractions of robot motion based on some environmental decomposition. We then generate discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion also satisfies the exact same formula

    Hybrid Controllers for Path Planning: A Temporal Logic Approach

    Get PDF
    Robot motion planning algorithms have focused on low-level reachability goals taking into account robot kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an integrated approach to the design of closed–loop hybrid controllers that guarantee by construction that the resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so–called Linear Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in the presence of an adversary that may instantaneously reposition the robot within the environment a finite number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic specification, which supervises a finite family of continuous feedback controllers, ensuring consistency between the discrete plan and the continuous execution

    Tree extraction and estimation of walnut structure parameters using airborne LiDAR data

    Full text link
    [EN] The development of new tools based on remote sensing data in agriculture contributes to cost reduction, increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct identification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for crown diameter, stem diameter, and stem volume with coefficient of determination values (R-2) equal to 0.95, 0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m(3) (21.55%), respectively. The models that gave the lowest R-2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree canopies was observed. Results of this study generate valuable information, which can be applied for improving the management of walnut plantations.Estornell Cremades, J.; Hadas, E.; Marti-Gavila, J.; López- Cortés, I. (2021). Tree extraction and estimation of walnut structure parameters using airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation. 96:1-9. https://doi.org/10.1016/j.jag.2020.102273S199

    Network Design Model with Evacuation Constraints Under Uncertainty

    Get PDF
    Abstract: Nepal earthquake, have shown the need for quick response evacuation and assistance routes. Evacuation routes are, mostly, based on the capacities of the roads network. However, in extreme cases, such as earthquakes, roads network infrastructure may adversely affected, and may not supply their required capacities. If for various situations, the potential damage for critical roads can be identify in advance, it is possible to develop an evacuation model, that can be used in various situations to plan the network structure in order to provide fast and safe evacuation. This paper focuses on the development of a model for the design of an optimal evacuation network which simultaneously minimizes construction costs and evacuation time. The model takes into consideration infrastructures vulnerability (as a stochastic function which is dependent on the event location and magnitude), road network, transportation demand and evacuation areas. The paper presents a mathematic model for the presented problem. However, since an optimal solution cannot be found within a reasonable timeframe, a heuristic model is presented as well. The heuristic model is based on evolutionary algorithms, which also provides a mechanism for solving the problem as a stochastic and multi-objective problem

    Breaking Boundaries in Computing in Undergraduate Courses

    Get PDF
    An important question in undergraduate curricula is that of incorporating computing into STEM courses for majors and non-majors alike. What does it mean to teach “computing” in this context? What are some of the benefits and challenges for students and instructors in such courses? This paper contributes to this important dialog by describing three undergraduate courses that have been developed and taught at Harvey Mudd College and Loyola Marymount University. Each case study describes the course objectives, implementation challenges, and assessments

    Inverse melting of the vortex lattice

    Full text link
    Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the formation of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced 'vortex dithering' technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.Comment: 13 pages, 4 figures, Nature, In pres

    Stochastic Multi-Objective Evacuation Model Under Managed and Unmanaged policies

    Get PDF
    Abstract Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and terrorist attacks, require evacuation and assistance routes. Evacuation routes are mostly based on the capacities of the road network. However, in extreme cases, such as earthquakes, road network infrastructure may adversely be affected, and may not supply their required capacities. If for various situations, the potential damage for critical roads can be identified in advance, it is possible to develop an evacuation model, that can be used in various situations. This paper focuses on the development of a model for the design of an optimal evacuation network which simultaneously minimizes retrofit costs of critical links (bridges, tunnels, etc.) and evacuation time. The model considers infrastructures' vulnerability (as a stochastic function which is dependent on the event location and magnitude), road network, transportation demand and evacuation areas. Furthermore, the model evaluates the benefits of managed evacuation (system optimum) when compared to unmanaged evacuation (user equilibrium). The paper presents a mathematic model for the presented problem. However, since an optimal solution cannot be found within a reasonable timeframe, a heuristic model is presented as well. This heuristic model is based on evolutionary algorithms, which also provides a mechanism for solving the problem as a multi-objective stochastic problem. Using a real-world data, the algorithm is evaluated and compared to the unmanaged evacuation conditions. The results clearly demonstrate the advantages of managed evacuation, as the average travel time can be reduced by 5% to 30%

    Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown Environments

    Get PDF
    This paper considers the problem of motion planning for a hybrid robotic system with complex and nonlinear dynamics in a partially unknown environment given a temporal logic specification. We employ a multi-layered synergistic framework that can deal with general robot dynamics and combine it with an iterative planning strategy. Our work allows us to deal with the unknown environmental restrictions only when they are discovered and without the need to repeat the computation that is related to the temporal logic specification. In addition, we define a metric for satisfaction of a specification. We use this metric to plan a trajectory that satisfies the specification as closely as possible in cases in which the discovered constraint in the environment renders the specification unsatisfiable. We demonstrate the efficacy of our framework on a simulation of a hybrid second-order car-like robot moving in an office environment with unknown obstacles. The results show that our framework is successful in generating a trajectory whose satisfaction measure of the specification is optimal. They also show that, when new obstacles are discovered, the reinitialization of our framework is computationally inexpensive

    Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy

    Get PDF
    Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 ÎĽm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy
    • …
    corecore